\ 4

Andreas Tiefenthaler / pxlpnk
contentful

Pry

Swiss army knife of a modern Rubyist

o

What i1s a REPL

— O m X

Read
Fval

Print
| O0p

(loop (print (eval (read))))

(loop { (puts (eval gets.chomp)) })

loop { puts(eval (gets.chomp)) }

> ruby -e " (loop { (puts (eval gets.chomp))})"

puts 'Hello'

Hello

puts Hello

-e:l:1n “eval':

(NameError)
from -e:1:1n
from -e:1:1n
from -e:1:1n
from -e:1:1n

uninitialized constant Hello

"eval'

"block in <main>'
"loop'

"<main>'

EXIsting Ruby REPLS

|RB

interactive Ruby
Irbrc file Is just Ruby

add your own helpers & customize the shell

Helpful hitp://irb.tools/

http://irb.tools/

Pry

http://pryrepl.org/ & on GitHub

has very good documentation

| ots of extensions

Ruby a

http://pryrepl.org/

Recap

Read Eval Print Loop
Powerful tool based on a "simple idea”

Ruby has multiple options: IRB, Pry

BET TO THE CODE

An Introduction

> gem install pry

> echo 'gem "pry"' >> Gemfile
> bundle install

> pry
[1] pry (main)>

[1] pry(main)> help

Help
help Show a list of commands or information about a specific command.
Context
cd Move into a new context (object or scope).
find-method Recursively search for a method within a class/module or the current namespace.
1s Show the list of vars and methods in the current scope.
pry-backtrace Show the backtrace for the pry session.
raise-up Raise an exception out of the current pry instance.
reset Reset the repl to a clean state.
watch Watch the value of an expression and print a notification whenever it changes.
whereami Show code surrounding the current context.

wtf? Show the backtrace of the most recent exception.

> show-doc Arrayi#sort

> ? Arrayi#sort

[1] pry(main)> show-doc Array#sort

From: array.c (C Method):
Owner: Array

Visibility: public
Signature: sort()

Number of lines: 15

Returns a new array created by sorting self.

Comparisons for the sort will be done using the <=> operator
or using an optional code block.

The block must implement a comparison between a and b, and return
+-1+, when a follows b, ® when a and b are equivalent, or +1
if b follows a.

See also Enumerable#sort by.

a = ["d", nau, ueu’ "C", ubu]
a. sor‘t #=> [uan , ubn , ncu . ndn , nen]
a.sor‘t { Ix’yl y <=> X } #=> [uen’ "d", ncu’ "b“, nan]

> show-source Arrayi#sort

> $ Arrayi#sort

[1] pry(main)> show-source Array#sort

From: array.c (C Method):
Owner: Array

Visibility: public
Number of lines: 7

VALUE
rb ary sort(VALUE ary)

{

ary = rb_ary dup(ary);
rb ary sort bang(ary);
return ary;

> edit HTTP.get

> cd []

[1] pry(main)> cd []

[2] pry(#<Array>):1> whereami
Inside #<Array>.

[3] pry(#<Array>):1> |}

[1] pry(main)> cd []

[2] pry(#<Array>):1> whereami
Inside #<Array>.

[3] pry(#<Array>):1> show-source

From: /Users/at/.rbenv/versions/2.2.1/1ib/ruby/2.2.0/pp.rb @ line 355:

Class name: Array
Number of monkeypatches: 3. Use the "-a option to display all available monkeypatches

Number of lines: 13

class Array # :nodoc:
def pretty print(q) # :nodoc:
g.group(1, [, *]1") {
q.seplist(self) {|v]|
q.pp Vv
}
}

end

def pretty print_cycle(q) # :nodoc:
q.text(empty? 2 *[]" ¢« "[...]")
end
end

> 1s
> ls —--grep sor¥*

[4] pry(#<Array>):1> 1s

Enumerable#methods:
all? each_entry
chunk each slice
collect_concat each_with_index
detect each with object
each_cons entries
Array#methods:
& collect each_1index
* collect! empty?
+ combination eql?
- compact fetch
<< compact! fill
<=> concat find_1index
== count first
[] cycle flatten
N delete flatten!
any? delete at frozen?
assoc delete if hash
at drop include?
bsearch drop while 1index
clear each insert
self.methods: _ pry _
locals: _ _dir_ _ex_ _file_

find

find_all
flat_map

grep

group_by

inspect

join

keep_if

last
length
map
map !
pack

inj
laz
max
max
mem

permutation

place
pop

pretty print

pretty print cycle
product

in

out

ect
y

_by
ber?

Pry

min one?
min_ by partition
minmax reduce
minmax_by slice_after
none? slice_before

push

rassoc

reject

reject!

repeated_combination
repeated permutation
replace

reverse

reverse!
reverse_each

rindex

rotate

rotate!

sample

slice_when

sort by

select
select!
shelljoin
shift
shuffle
shuffle!
size
slice
slice!
sort
sort!
sort by!
take

take _while

to_a
to_ary
to_h

to s
transpose
uniq
uniq!
unshift
values_at
zip

How can those tools help you?

Pry extended

Commands

Plugins

Commands

Modifty the user input
The syntax Is more intuitive than building a plugin

They are local to your Pry console and do not require
monkey patches

Help to form your workflow

Pry: :Commands.command /*$/, "repeat lst” do
_pry .run command Pry.history.to a.last
end

Pry.commands.alias command 'c', 'continue'

Plugins

Allow to extend Pry
Use the power of other libraries and Gems

Help to form your workflow

pory-byebug
pry-exception_explorer
ory-macro

ory-rails

Recap

Great tool to navigate code
Documentation at your fingertips

Can be extended and can be customized to shape
your workflow

RDD & Debugging

puts @Qcurrent user.inspect

P @current user

if i1s this true?
puts “Will I be called?”
some method

end

Context

State
‘Bigger Picture”

green: number of puts
vellow: understanding of code
red: use of the debugger

Warning: Fictional chart

Debugger

debugger |di: bAags| (noun)

a computer program that assists in the detection and correction of errors in other
computer programs.

Breakpoints

Navigate Code

> be ruby -rpry lib/user.rb
From: /Users/at/src/private/talks/pry-talk/console/lib/user.rb @ line 16 User#fullname:

14: def fullname
15: binding.pry

=> 16: first name + last name
17: end

[1] pry(#<User>)> first name
=> "First"

[2] pry(#<User>)> up

From: /Users/at/src/private/talks/pry-talk/console/lib/user.rb @ line 23 :

18: end
19:
20: _FILE__ == $0

21: opts = {first name: 'First', last name: ‘Last'}
22: user = User.new(opts)
=> 23: user.fullname

Optimize Workflow

RDD

REPL Driven Development

Understanding the Problem

EXploring & leaching

Recap

Debugging is essential and can avoid frustration
A better understanding of state and context
Quicker feedback cycle -> Better understanding

Powerful for beginners and advanced programmers

Future

Random |ldeas

REPL driven development with Pry
Conrad Irwin

http://pryrepl.org/

http://pryrepl.org/

Thank you

Andreas Tiefenthaler / pxlpnk

v
contentful

Take a REPL with you

require 'pathname'

ENV ['BUNDLE GEMFILE'] ||= File.expand path('../../
Gemfile', Pathname.new(FILE) .realpath)

require 'english'

require 'rubygems'

require 'bundler/setup'

Bundler.require (:default, :development)

SLOAD PATH << 'lib'
require 'user'

Pry.start

